
Fig. 2. Report generated by the AI assisted AIBAAs with sensitive information replaced by 0's.

Fig. 1. BAA work flow diagram of Traditional (Top) and AI assisted processes (Bottom).
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this AI system is applied to the hand X-ray images
of Asian people for automatic BAA with deep
learning technology. Nevertheless, the AI system
still has many challenges to overcome such as pa-
tient privacy, imaging that requires professional
physicians to interpret, human anatomical differ-
ences and different clinical manifestations of the
same disease. These are all problems that are not
found in general images. Medical images are
particularly challenging because the specific domain
knowledge is required to interpret these images.
However, with the enhanced neural network which
is now widely applied, the AI system can increase
the BAA efficiency and accuracy. In addition, the
future height of the client is automatically predicted
in a structured report for clinical use.
We have already presented the performance

report of the model in this study. However, this
article did not mention the application of bone age
assessment in other hospitals or cities in Taiwan,
more clinical trials will need to be conducted to
prove model effectiveness in the future.
ABAIs has successfully achieved the following

goals: (a) demonstrated the application of ML and
AI in medical imaging; (b) tools and methods were
used to stimulate the field of ML to help solve other
diagnostic problems; (c) it provides more accurate,
efficient, and timely results of bone age diagnosis,
and can be applied for clinical teaching in hospitals,
thus reducing the workload of physicians and pro-
vides physician-assisted diagnoses.
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Supplementary Fig. 1. Flowchart of radiographs enrolled in the study.
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Supplementary Fig. 2. Schematic diagram of ABAIs.

Supplementary Fig. 3. An example of saliencymap (right), showing the significant features learned from a clinical image (left), by deep learning for ABAIs.

Supplementary Fig. 4. The Q-Q plot of AI predicted bone age (y-axis)
and doctor assessment bone age (x-axis).

Supplementary Fig. 5. The difference between AI predicted bone age and
doctor assessment bone age.
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